The issues of numerous steel beam components and the tendency for deck cracking under negative bending moment zones have long been challenges faced by traditional composite I-beams with flat steel webs. This study introduces an optimized approach by modifying the structural design and material selection, specifically substituting flat steel webs with corrugated steel webs and using ultra-high-performance concrete for the deck in the negative bending moment zone. Three sets of model tests were conducted to compare and investigate the influence of deck material and web forms on the bending and crack resistance of steel-concrete composite I-beams under a negative bending moment zone. The findings indicate that, compared to a conventional steel-normal concrete composite I-beam, incorporating ultra-high performance concrete into the negative bending zone enhances the cracking load by 98%, resulting in finer and denser cracks, and improves the ultimate bearing capacity by approximately 10%. In comparison to the composite I-beam with flat steel webs, the longitudinal stiffness of the composite I-beam with corrugated steel webs is smaller, which can further enhance the bridge deck's resistance to cracking in the negative bending moment zone, and maximize the steel-strengthening effect of the lower flange of the steel I-beam. Based on the findings of this study, it is recommended to use steel ultra-high-performance concrete composite I-beams with corrugated steel webs due to their superior crack resistance, bending strength, and efficient material utilization.
Read full abstract