Designing efficient, cheap catalysts for oxygen production is very important for water electrolysis and green hydrogen production. Here, synthesis and electrocatalytic performance of graphene oxide (GO)/nickel-aluminum layered double hydroxide (NiAl-LDH) composites were investigated for water-splitting applications. The composition, microstructure, and morphology of the nanocomposites were confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and field emission scanning electron microscopy (FE-SEM), and their water oxidation performance was examined in 0.1 M potassium hydroxide solution in the presence and absence of magnetic field. The results show that optimized GO/NiAl-LDH nanocomposite (GO-1 %/NiAl-LDH) exhibits the lowest overpotential compared with other prepared nanocomposites. This performance demonstrates comparable electroactivity to well-developed electrocatalysts like the perovskite-based electrodes, it also shows an improved electrocatalytic activity compared to NiAl-LDHs due to the presence of graphene oxide in the composite. We interpreted this significant performance to improve electron transform and high active site at the synthesized GO/NiAl-LDH composites. The best electrocatalytic activity with an overpotential of 443 and 473 mV at the current density 10 mA.cm−2 were evidenced for GO-1 %/NiAl-LDH nanocomposite in the presence and absence of external magnetic field, respectively. Furthermore, the tafel slope were reported about 54 and 162 mV.dec−1 in the presence and absence of magnetic field, respectively. This improved water oxidation can be attributed to the magneto-hydrodynamic effect and the increased number of metal sites on LDHs under the magnetic field.