In this study, a bio-inspired patterned adhesive is proposed for a single-lap joint between carbon fiber reinforced polymer and titanium. Finite element analysis is performed with cohesive zone modeling to observe the damage propagation and adhesive strength of gecko-inspired hexagonal and lamellae patterns that are designed with high toughness and low toughness adhesives. Results show that adhesive fracture path and damage initiation location can be controlled by means of adhesive patterns, thereby enhancing composite adhesive joint strength. Large transitional stress peaks can be created by the hybrid adhesive patterns, resulting in increased energy absorption during failure. This work aims to employ bio-inspired concepts to path novel designs for patterned adhesive architectures to increase composite joint strength performances.
Read full abstract