Cerebrovascular reactivity (CVR) reflects the ability of blood vessels to dilate or constrict in response to a vasoactive stimulus, and allows researchers to assess the brain's vascular health. Individuals with spinal cord injury (SCI) are at an increased risk for autonomic dysfunction in addition to cognitive impairments, which have been linked to a decline in CVR; however, there is currently a lack of brain-imaging studies that investigate how CVR is altered after SCI. In this study, we used a breath-holding hypercapnic stimulus and functional near-infrared spectroscopy (fNIRS) to investigate CVR alterations in individuals with SCI (n = 20, 14M, 6F, mean age = 46.3 ± 10.2 years) as compared to age- and sex-matched able-bodied (AB) controls (n = 25, 19M, 6F, mean age = 43.2 ± 12.28 years). CVR was evaluated by its amplitude and delay components separately by using principal component analysis and cross-correlation analysis, respectively. We observed significantly delayed CVR in the right inferior parietal lobe in individuals with SCI compared to AB controls (linear mixed-effects model, fixed-effects estimate = 6.565, Satterthwaite's t-test, t = 2.663, p = 0.008), while the amplitude of CVR was not significantly different. The average CVR delay in the SCI group in the right inferior parietal lobe was 14.21 s (sd: 6.60 s), and for the AB group, the average delay in the right inferior parietal lobe was 7.08 s (sd: 7.39 s). CVR delays were also associated with the duration since injury in individuals with SCI, in which a longer duration since injury was associated with a shortened delay in CVR in the right inferior parietal region (Pearson's r-correlation, r = -0.59, p = 0.04). This study shows that fNIRS can be used to quantify changes in CVR in individuals with SCI, and may be further used in rehabilitative settings to monitor the cerebrovascular health of individuals with SCI.