Myofascial disease is an important complication associated with obesity and one of the leading causes of physical disability globally. In the face of limited treatment options, the burden of myofascial disorders is predicted to increase along with the escalating prevalence of obesity. Several pathological processes in obesity contribute to modifications in fascial extracellular matrix mechanical and biological properties and functions. Changes in adipose tissue metabolism, chronic inflammatory phenotype, oxidative stress, and other mechanisms in obesity may alter the physiochemical and biomechanical properties of fascial hyaluronan. Understanding the pathophysiological importance of hyaluronan and other components of the fascial connective tissue matrix in obesity may shed light on the etiology of associated myofascial disorders and inform treatment strategies. Given its unique and favorable pharmacological properties, hyaluronan has found a broad range of clinical applications, notably in orthopedic conditions such as osteoarthritis and tendinopathies, which share important pathophysiological mechanisms implicated in myofascial diseases. However, while existing clinical studies uniformly affirm the therapeutic value of hyaluronan in myofascial disorders, more extensive studies in broader pharmacological and clinical contexts are needed to firmly validate its therapeutic adaptation.