Water stress is a critical factor affecting the health and productivity of ornamental plants, yet early detection remains challenging. This study aims to investigate the spectral responses of four ornamental plant taxa—Rosa hybrid (rose), Itea virginica (itea), Spiraea nipponica (spirea), and Weigela florida (weigela)—under varying levels of water stress using hyperspectral imaging and principal component analysis (PCA). Hyperspectral data were collected across multiple wavelengths and PCA was applied to identify key spectral bands associated with different stress levels. The analyses revealed that the first two principal components captured a majority of variance in the data, with specific wavelengths around 680 nm, 760 nm, and 810 nm playing a significant role in distinguishing between the stress levels. Score plots demonstrated clear separation between different stress treatments, indicating that spectral signatures evolve distinctly over time as water stress progresses. Influence plots identified observations with disproportionate impacts on the PCA model, ensuring the robustness of the analysis. Findings suggest that hyperspectral imaging, combined with PCA, is a powerful tool for early detection and monitoring of water stress in ornamental plants, providing a basis for improved water management practices in horticulture.
Read full abstract