Peptidoglycan recognition proteins (PGRPs) are a class of pattern recognition receptors (PRRs) that activate the innate immune system in response to microbial infection by detection of peptidoglycan, a distinct component of bacterial cell walls. Bioinformatic studies have revealed four PGRPs in the red imported fire ant Solenopsis invicta; nonetheless, the mechanism of the immune response of S. invicta induced by pathogens is still poorly understood. The peptidoglycan recognition protein full-length cDNA (designated as SiPGRP-S1/S2/S3/L) from S. invicta was used in this investigation. According to the sequencing analysis, there was a significant degree of homology between the anticipated amino acid sequence of SiPGRPs and other members of the PGRPs superfamily. Molecular docking studies demonstrated that SiPGRPs show strong binding affinity for a variety of PGN substrates. Additionally, tissue distribution analysis indicated that SiPGRPs are primarily expressed in several tissues of naïve larvae, including fat body, hemocytes, head, and thorax, as detected by quantitative real-time PCR (RT-qPCR). Microbial challenges resulted in variable changes in mRNA levels across different tissues. Furthermore, the antibacterial effects of antimicrobial peptides (AMPs) produced by major ants infected with Metarhizium anisopliae were assessed. These AMPs demonstrated inhibitory effects against M. anisopliae, Staphylococcus aureus, and Escherichia coli, with the most pronounced effect observed against E. coli. In conclusion, SiPGRPs act as pattern recognition receptors (PRRs) that identify pathogens and initiate the expression of AMPs in S. invicta, this mechanism contributes to the development of biopesticides designed for the targeted control of invasive agricultural pests.
Read full abstract