Abstract
Lactococcus lactis subsp. cremoris C60 is a probiotic strain of lactic acid bacteria (LAB) which induces various immune modifications in myeloid lineage cells. These modifications subsequently regulate T cell function, resulting in enhanced immunity both locally and systemically. Here, we report that C60 suppresses tumor growth by enhancing macrophage function via metabolic alterations, thereby increasing adenosine triphosphate (ATP) production in a murine melanoma model. Intragastric (i.g.) administration of C60 significantly reduced tumor volume compared to saline administration in mice. The anti-tumor function of intratumor (IT) macrophage was upregulated in mice administered with C60, as evidenced by an increased inflammatory phenotype (M1) rather than an anti-inflammatory/reparative (M2) phenotype, along with enhanced antigen-presenting ability, resulting in increased tumor antigen-specific CD8+ T cells. Through this functional modification, we identified that C60 establishes a glycolysis-dominant metabolism, rather than fatty acid oxidation (FAO), in IT macrophages, leading to increased intracellular ATP levels. To address the question of why orally supplemented C60 exhibits functions in distal places, we found a possibility that bacterial cell wall components, which could be distributed throughout the body from the gut, may induce stimulatory signals in peripheral macrophages via Toll-like receptors (TLRs) signaling activation. Thus, C60 strengthens macrophage anti-tumor immunity by promoting a predominant metabolic shift towards glycolysis upon TLR-mediated stimulation, thereby increasing substantial energy production.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have