Molecular epidemiology studies are essential to refine our understanding of migrations of phytopathogenic bacteria, the major determining factor in their emergence, and to understand the factors that shape their population structure. Microsatellite and minisatellite typing are useful techniques for deciphering the population structure of Xanthomonas citri pv. citri, the causal agent of Asiatic citrus canker. This paper presents a molecular epidemiology study, which has improved our understanding of the history of the pathogen's introductions into the Arabian Peninsula, since it was first reported in the 1980s. An unexpectedly high genetic diversity of the pathogen was revealed. The four distinct genetic lineages within X. citri pv. citri, which have been reported throughout the world, were identified in the Arabian Peninsula, most likely as the result of multiple introductions. No copper‐resistant X. citri pv. citri strains were identified. The pathogen's population structure on Mexican lime (their shared host species) was closely examined in two countries, Saudi Arabia and Yemen. We highlighted the marked prevalence of specialist pathotype A* strains in both countries, which suggests that specialist strains of X. citri pv. citri may perform better than generalist strains when they occur concomitantly in this environment. Subclade 4.2 was the prevailing lineage identified. Several analyses (genetic structure deciphered by discriminant analysis of principal components, RST‐based genetic differentiation, geographic structure) congruently suggested the role of human activities in the pathogen's spread. We discuss the implications of these results on the management of Asiatic citrus canker in the region.
Read full abstract