This study develops predictive models for Chinese female patients with VL utilizing machine learning techniques. The aim is to create an effective model that can assist in clinical diagnosis and treatment of vaginal relaxation, thereby enhancing women’s pelvic floor health. In total, 1184 women with VL have been randomly selected and categorized into groups using the finger measurement method. Among them, there are 383 cases of mild VL, 405 cases of moderate VL, and 396 cases of severe VL. Concurrently, 396 healthy women without VL who underwent routine health examinations have been chosen at random and assigned to the non-VL group. Based on 1580 cases, we have established LightGBM, Random Forest, XGBoost, and AdaBoost models based on training dataset using 5-fold cross-validation and GridSearch, and analyzed the performance of the models on the hold-out test dataset. The confusion matrix, precision, recall, F1 score, overall accuracy, and ROC curve of the models on the hold-out test dataset are compared. The overall accuracy of LightGBM model, RF model, XGBoost model, and AdaBoost model are 0.8987, 0.8987, 0.8987, and 0.8457, respectively. The average AUC of LightGBM model is 0.976, the one of RF model is 0.9763, the one of XGBoost model is 0.9775, and the one of AdaBoost model is 0.928. The XGBoost model has the more comprehensive and reasonable performance among the four prediction models, which can accurately distinguish between healthy, mild VL, as well as moderate VL and severe VL, which can assist doctors in diagnosing persons’ conditions more accurately, devising personalized treatment plans, avoiding unnecessary surgeries, reducing persons’ psychological stress, improving patient compliance and treatment outcomes, thus enhancing overall treatment results.
Read full abstract