Density functional theory calculations were utilized to elucidate the water oxidation mechanism catalyzed by polyanionic tetramanganese complex a [MnIII 3 MnIV O3 (CH3 COO)3 (A-α-SiW9 O34 )]6- . Theoretical results indicated that catalytic active species 1 (Mn4 III,III,IV,IV ) was formed after O2 formation in the first turnover. From 1, three sequential proton-coupled electron transfer (PCET) oxidations led to the MnIV -oxyl radical 4 (Mn4 IV,IV,IV,IV -O⋅). Importantly, 4 had an unusual butterfly-shaped Mn2 O2 core for the two substrate-coordinated Mn sites, which facilitated O-O bond formation via direct coupling of the oxyl radical and the adjacent MnIV -coordinated hydroxide to produce the hydroperoxide intermediate Int1 (Mn4 III,IV,IV,IV -OOH). This step had an overall energy barrier of 24.9 kcal mol-1 . Subsequent PCET oxidation of Int1 to Int2 (Mn4 III,IV,IV,IV -O2 ⋅) enabled the O2 release in a facile process. Furthermore, apart from the Si-centered complex, computational study suggested that tetramanganese polyoxometalates with Ge, P, and S could also catalyze the water oxidation process, where those bearing P and S likely present higher activities.
Read full abstract