The role of N/F co-doping on the defect-driven room-temperature d0 ferromagnetism in group-I element Li doped ZnO nanowire arrays has been investigated. The ferromagnetic signature of pristine ZnO nanowires has enhanced significantly after Li doping but the Li-N co-doping has found to be more effective in the stabilization and enhancement in room-temperature ferromagnetism in ZnO nanowires. Saturation magnetization in Li-doped ZnO nanowires found to increase from 0.63 to 2.52 emu/g and the Curie temperature rises up to 648 K when 10 at. % N is co-doped with 6 at. % Li. On the other hand, Li-F co-doping leads to exhibit much poor room-temperature ferromagnetic as well as visible luminescence properties. The valance state of the different dopants is estimated by x-ray photoelectron spectroscopy while the photoluminescence spectra indicate the gradual stabilization of Zn vacancy defects or defect complexes in presence of No acceptor states, which is found to be responsible for the enhancement of intrinsic ferromagnetism in ZnO:Li matrix. Therefore, the Li-N co-doping can be an effective parameter to stabilize, enhance, and tune zinc vacancy-induced room-temperature d0 ferromagnetism in ZnO nanowires, which can be an exciting approach to prepare new class of spintronic materials.
Read full abstract