To ensure the safe production of mines, the intelligent trend of underground mining operations is gradually advancing. However, the operational environment of subterranean mining is intricate, making the conventional path-planning algorithm used by mining inspection robots frequently inadequate for real requirements. To safeguard the mining inspection robot, targeting the problem of low search efficiency and path redundancy in the path planning of the existing rapidly exploring random tree (RRT) algorithm in the narrow and complex unstructured environment, a path-planning algorithm combining improved RRT and a probabilistic road map (PRM) is proposed. Initially, the target area is efficiently searched according to the fan-shaped goal orientation strategy and the adaptive step size expansion strategy. Subsequently, the PRM algorithm and the improved RRT algorithm are combined to reduce the redundant points of the planning path. Ultimately, considering the kinematics of the vehicle, the path is optimized by the third-order Bessel curve. The experimental simulation results show that the proposed path-planning algorithm has a higher success rate, smoother path, and shorter path length than other algorithms in complex underground mining environments, which proves the effectiveness of the proposed algorithm.
Read full abstract