Abstract

Drainage pipes are a critical component of urban infrastructure, and their safety and proper functioning are vital. However, haze problems caused by humid environments and temperature differences seriously affect the quality and detection accuracy of drainage pipe images. Traditional repair methods are difficult to meet the requirements when dealing with complex underground environments. To solve this problem, we researched and proposed a dehazing method for drainage pipe images based on multi-attention multi-scale adaptive feature networks. By designing multiple attention and adaptive modules, the network is able to capture global features with multi-scale resolution in complex underground environments, thereby achieving end-to-end dehazing processing. In addition, we also constructed a large drainage pipe dataset containing tens of thousands of clear/hazy image pairs of drainage pipes for network training and testing. Experimental results show that our network exhibits excellent dehazing performance in various complex underground environments, especially in the real scene of urban underground drainage pipes. The contributions of this paper are mainly reflected in the following aspects: first, a novel multi-scale adaptive feature network based on multiple attention is proposed to effectively solve the problem of dehazing drainage pipe images; second, a large-scale drainage pipe data is constructed. The collection provides valuable resources for related research work; finally, the effectiveness and superiority of the proposed method are verified through experiments, and it provides an efficient solution for dehazing work in scenes such as urban underground drainage pipes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call