In this paper, we present a new and very fast ray-tracing method using a ray tube tree, which is based on uniform geometrical theory of diffraction (UTD) and can solve some of the problems that other ray-tracing methods have. It is developed for quasi three-dimensional (3-D) environments and can be applied to any complex propagation environment composed of arbitrary-shaped buildings and streets. It finds all propagation paths from a transmitter to a receiver extensively with very high computation efficiency. It is fundamentally a point-to-point tracing method, so reception tests are not required and it guarantees high accuracy. To validate our ray-tracing method, signal path loss and root mean square (rms) delay spread were computed in the downtown core of Ottawa, Canada, and they were also compared with the published measurements. The results of the proposed method in this paper show good agreement with the measurements. The computation time required to obtain a path loss map in the site is revealed to be very short in comparison with other methods.
Read full abstract