An accurate aging forecasting and state of health estimation is essential for a safe and economically valuable usage of lithium-ion batteries. However, the non-linear aging of lithium-ion batteries is dependent on various operating and environmental conditions wherefore the degradation estimation is a complex challenge. Moreover, for on-board estimations where only limited memory and computing power are available, a state of health estimation algorithm is needed that is able to process raw sensor data without complex preprocessing. This paper presents a data-driven state of health estimation algorithm for lithium-ion batteries using different segments of partial discharge profiles. Raw sensor data is directly input to a temporal convolutional neural network without the need of executing feature engineering steps. The neural network is able to process raw sensor data and estimate the state of health of battery cells for different aging and degradation scenarios. After executing Bayesian hyperparameter tuning together with a stratified cross validation approach for splitting the training and test data, the achieved generalized aging model estimates the state of health with an overall root mean squared error of 1.0%.