Catalytic wet air oxidation (CWAO) is one of the most promising technologies for pollution abatement. Developing catalysts with high activity and stability is crucial for the application of the CWAO process. The Mn/Ce complex oxide catalysts for CWAO of high concentration phenol-containing wastewater were prepared by coprecipitation. The catalyst preparation conditions were optimized by using an orthogonal layout method and single-factor experimental analysis. The Mn/Ce serial catalysts were characterized by Brunauer-Emmett-Teller (BET) analysis and the metal cation leaching was measured by inductively coupled plasma torch-atomic emission spectrometry (ICP-AES). The results show that the catalysts have high catalytic activities even at a low temperature (80°C) and low oxygen partial pressure (0.5 MPa) in a batch reactor. The metallic ion leaching is comparatively low (Mn<6.577 mg/L and Ce<0.6910 mg/L, respectively) in the CWAO process. The phenol, CODCr, and TOC removal efficiencies in the solution exceed 98.5% using the optimal catalyst (named CSP). The new catalyst would have a promising application in CWAO treatment of high concentration organic wastewater.