Navigation in complex and unknown environments is a major challenge for elderly blind people. Unfortunately, conventional navigation aids such as white canes and guide dogs provide only limited assistance to blind people with walking impairments as they can hardly be combined with a walker, required for walking assistance. Additionally, such navigation aids are constrained to the local vicinity only. We believe that technologies developed in the field of robotics have the potential to assist blind people with walking disabilities in complex navigation tasks as they can provide information about obstacles and reason on both global and local aspects of the environment. The contribution of this article is a smart walker that navigates blind users safely by leveraging recent developments in robotics. Our walker can support the user in two ways, namely by providing information about the vicinity to avoid obstacles and by guiding the user to reach the designated target location. It includes vibro-tactile user interfaces and a controller that takes into account human motion behavior obtained from a user study. In extensive qualitative and quantitative experiments that also involved blind and age-matched participants we demonstrate that our smart walker safely navigates users with limited vision.
Read full abstract