Characterization of complex natural product mixtures to the absolute structural level of their components often requires significant amounts of starting materials and lengthy purification process, followed by arduous structure elucidation efforts. The crystalline sponge (CS) method has demonstrated utility in the absolute structure elucidation of isolated organic compounds at miniscule quantities compared to conventional methods. In this work, we developed a new CS-based workflow that greatly expedites the in-depth structural analysis of crude natural product extracts. Using a crude extract of the red alga Laurencia pacifica, we showed that CS affinity screening prior to compound isolation enables prioritization of analytes present in the extract, and we subsequently resolved the molecular structures of six sesquiterpenes with stereochemical clarity from around 10 mg crude extract. This study demonstrates a new chemotyping workflow that can greatly accelerate natural product discovery from complex samples.