Traumatic brain injuries present significant diagnostic challenges in emergency medicine, where the timely interpretation of medical images is crucial for patient outcomes. In this paper, we propose a novel AI-based approach for automatic radiology report generation tailored to cranial trauma cases. Our model integrates an AC-BiFPN with a Transformer architecture to capture and process complex medical imaging data such as CT and MRI scans. The AC-BiFPN extracts multi-scale features, enabling the detection of intricate anomalies like intracranial hemorrhages, while the Transformer generates coherent, contextually relevant diagnostic reports by modeling long-range dependencies. We evaluate the performance of our model on the RSNA Intracranial Hemorrhage Detection dataset, where it outperforms traditional CNN-based models in both diagnostic accuracy and report generation. This solution not only supports radiologists in high-pressure environments but also provides a powerful educational tool for trainee physicians, offering real-time feedback and enhancing their learning experience. Our findings demonstrate the potential of combining advanced feature extraction with transformer-based text generation to improve clinical decision-making in the diagnosis of traumatic brain injuries.
Read full abstract