Summary Various types of ultrahigh-molar-mass polyacrylamides (HPAMs) and their copolymers and terpolymers used not only in enhanced oil recovery (EOR) but also in drilling, fracturing, water treatment, and tailing applications require an accurate description of polymer molar mass (Mw) and hydrodynamic size for their optimal design. The range of Mw for various types of available HPAMs is between 4 and 30 million g/mol and is typically determined by use of intrinsic-viscosity measurement. Molecular-weight distribution (MWD) cannot be determined because neither standard with low polydispersity index (PDI) nor gel-permeation-chromatography (GPC) or size-exclusion-chromatography (SEC) techniques exist today for such ultrahigh-molar-mass polymers. Moreover, the solution environment in underground reservoirs, characterized by high temperatures, pH values, and the presence of monovalent and divalent ions, may often lead to changes in polymer-macromolecular conformation. Current techniques, SEC, ultraviolet-visible measurements, and liquid chromatography, are not capable of accurately investigating these complex macromolecular structures for various reasons. In this paper, the asymmetrical-flow field-flow fractionation (AF4) system was used to fractionate four different ultrahigh-molecular-weight HPAM samples, varying in molar mass and commercially used for oilfield applications, in various carrier pH values ranging from 12 to 3 (pH values of 12, 7.4, and 3). The system uses field-flow fractionation (FFF), a family of analytical techniques developed specifically for separating and characterizing macromolecules, colloids, and particles. The theoretical separation range for AF4 is between 103 to 1012 g/mol. Other advantages over conventional GPC/SEC include minimum shear degradation, mild operating conditions, and no sample loss caused by adsorption. The flow system was equipped with a multiangle-light-scattering (MALS) and refractive-index (RI) detectors to measure molar mass and radius of gyration (Rg). The results show that the observed molecular weight of the polymer aggregate increased substantially as the pH value of the carrier solution decreased from 12 to 3, especially for higher-molar-mass polymers. The sample Rg showed the opposite trend, decreasing as the pH of the carrier solution changed from basic to acidic. For ultrahigh molecular HPAM at high pH, a narrower molar mass and radius distribution was observed with disaggregated molar mass and increased branching or swelling (therefore larger hydrodynamic radius). Use of this direct separation and measurement technique can improve understanding of polymer-macromolecular structure and corresponding changes in the reservoir brines.