The ionospheric F2 critical frequency (foF2) is one of the most crucial application parameters in high-frequency communication, detection, and electronic warfare. To improve the accuracy of spatial reconstruction of the ionospheric foF2, we propose a high-accuracy surface (HAS) modeling method. This method converts difficult-to-solve differential equations into more manageable algebraic equations using direct difference approximation, significantly reducing algorithm complexity and computational load while exhibiting excellent convergence properties. We used seven stations in Brisbane, Canberra, Darwin, Hobart, Learmonth, Perth, and Townsville, with one station as a validation station and six as training stations (e.g., Brisbane as a validation station and the other stations—Canberra, Darwin, Hobart, Learmonth, Perth, and Townsville—as training stations). The training stations and the HAS method were used to train and reconstruct the validation stations at different solar activity periods, seasons, and local times. The predicted values of the validation stations were compared with the measured values, and the proposed method was analyzed and validated. The reconstruction results show the following. (1) The relative root mean square errors (RRMSEs) of HAS method prediction in different solar activity epochs were 13.67%, 7.74%, and 9.19%, respectively, which are 13.57%, 7.41%, and 6.41% higher than the prediction accuracy of the Kriging method, respectively. (2) In the four seasons, the RRMSEs of the HAS method prediction are 9.27%, 13.1%, 8.81%, and 8.09%, respectively, which are 10.83%, 11.73%, 4.25%, and 12.00% higher than the prediction accuracy of the Kriging method. (c) During the daytime and nighttime, the RRMSEs of HAS method prediction were 9.23% and 11.17%, which were 5.92% and 11.99% higher than the prediction accuracy of the Kriging method, respectively. (d) Under the validation dataset, the average predictive RRMSE of the HAS method was 10.29%, and the average predictive RRMSE of the IRI prediction model was 12.35%, with a 2.06% improvement in the predictive accuracy of the HAS method. In general, the prediction effect of the HAS method was better than that of the Kriging method, thus verifying the effectiveness and reliability of the proposed method. In summary, the proposed reconstruction method is of great significance for improving usable frequency prediction and enhancing communication performance.