The brain is a complex organ operating on multiple scales. From molecular events that inform electrical and biochemical cellular responses, the brain interconnects processes all the way up to the massive network size of billions of brain cells. This strongly coupled, nonlinear, system has been subject to research that has turned increasingly multidisciplinary. The seminal work of Hodgkin and Huxley in the 1950s made use of experimental data to derive a coherent physical model of electrical signaling in neurons, which can be solved using mathematical and computational methods, thus bringing together neuroscience, physics, mathematics, and computer science. Over the last decades numerous projects have been dedicated to modeling and simulation of specific parts of molecular dynamics, neuronal signaling, and neural network behavior. Simulators have been developed around a specific objective and scale, in order to cope with the underlying computational complexity. Often times a dimension reduction approach allows larger scale simulations, this however has the inherent drawback of losing insight into structure-function interplay at the cellular level. This paper gives an overview of the project NeuroBox that has the objective of integrating multiple brain scales and associated physical models into one unified framework. NeuroBox hosts geometry and anatomical reconstruction methods, such that detailed three-dimensional domains can be integrated into numerical simulations of models based on partial differential equations. The project further focusses on deriving numerical methods for handling complex computational domains, and to couple multiple spatial dimensions. The latter allows the user to specify in which parts of the biological problem high-dimensional representations are necessary and where low-dimensional approximations are acceptable. NeuroBox offers workflow user interfaces that are automatically generated with VRL-Studio and can be controlled by non-experts. The project further uses uG4 as the numerical backend, and therefore accesses highly advanced discretization methods as well as hierarchical and scalable numerical solvers for very large neurobiological problems.
Read full abstract