Shale reservoirs have complex mineral compositions and are rich in micro-scale pores. It is of great scientific and engineering significance to explore the mechanism of external fluids on the pore throat structure of shale. In this paper, pure carbonaceous shale is taken as the research object, and the mechanism of the influence of slip water and reflux fluid on the pore throat structure is analyzed by using nuclear magnetic resonance (NMR) technology. Then, the sensitivity of different types of shale to external fluids is comparatively analyzed and summarized. The results show that (1) the oil slick has a certain effect on the total porosity of different types of shale. The rate of change is shown as carbonaceous shale (− 7.1%) > pure shale (− 1.6%). (b) For slickwater, the average reduction of macro- and micro/nanopores in carbonaceous shale is 90.0% and 5.0%, respectively, while the average reduction of macro- and mesopores in pure shale is 17.7% and 6.8%, respectively. (c) Total porosity of different shale types is insensitive to refluxing fluids. The average increase in macro-, meso-, and small pores of carbonaceous shale is 31.8%, 23.6%, and 20.2%, respectively; the average increase in macro- and small pores of pure shale is 17.1%.