Angiogenesis, the process of building complex vascular structures, begins with sprout formation on preexisting blood vessels, followed by extension of the vessels through proliferation and migration of endothelial cells. Based on the potential therapeutic benefits of preventing angiogenesis in pathological conditions, many studies have focused on the mechanisms of its initiation as well as control. However, how the extension of vessels is terminated remains obscure. Thus, we investigated the negative regulation mechanism. We report that increased intracellular calcium can induce dephosphorylation of the endothelial receptor tyrosine kinase Tie2. The calcium-mediated dephosphorylation was found to be dependent on Tie2-calmodulin interaction. The Tyr1113 residue in the C-terminal end loop of the Tie2 kinase domain was mapped and found to be required for this interaction. Moreover, mutation of this residue into Phe impaired both the Tie2-calmodulin interaction and calcium-mediated Tie2 dephosphorylation. Furthermore, expressing a mutant Tie2 incapable of binding to calmodulin or inhibiting calmodulin function in vivo causes unchecked growth of the vasculature in Xenopus. Specifically, knockdown of Tie2 in Xenopus embryo retarded the sprouting and extension of intersomitic veins. Although human Tie2 expression in the Tie2-deficient animals almost completely rescued the retardation, the Tie2(Y1113F) mutant caused overgrowth of intersomitic veins with strikingly complex and excessive branching patterns. We propose that the calcium/calmodulin-dependent negative regulation of Tie2 can be used as an inhibitory signal for vessel growth and branching to build proper vessel architecture during embryonic development.
Read full abstract