IntroductionMismatch negativity, an electrophysiological measure, evaluates the brain's capacity to discriminate sounds, regardless of attentional and behavioral capacity. Thus, this auditory event-related potential is promising in the study of the neurophysiological basis underlying auditory processing. ObjectiveTo investigate complex acoustic signals (speech) encoded in the auditory nervous system of children with specific language impairment and compare with children with auditory processing disorders and typical development through the mismatch negativity paradigm. MethodsIt was a prospective study. 75 children (6–12 years) participated in this study: 25 children with specific language impairment, 25 with auditory processing disorders, and 25 with typical development. Mismatch negativity was obtained by subtracting from the waves obtained by the stimuli /ga/ (frequent) and /da/ (rare). Measures of mismatch negativity latency and two amplitude measures were analyzed. ResultsIt was possible to verify an absence of mismatch negativity in 16% children with specific language impairment and 24% children with auditory processing disorders. In the comparative analysis, auditory processing disorders and specific language impairment showed higher latency values and lower amplitude values compared to typical development. ConclusionThese data demonstrate changes in the automatic discrimination of crucial acoustic components of speech sounds in children with specific language impairment and auditory processing disorders. It could indicate problems in physiological processes responsible for ensuring the discrimination of acoustic contrasts in pre-attentional and pre-conscious levels, contributing to poor perception.