A single crystal of natrolite, Na2Al2Si3O10 ·2H2O (space group Fdd2), was studied by X-ray diffraction methods at room temperature. The intensities were measured in a complete sphere of reflection up to sinΘ/ λ=0.903 A−1. A refinement of high-order diffraction data yielded residuals of R/(F)=0.9%, Rw(F)=0.8%, GoF=1.40 for 1856 high-angle reflections (0.7≤sinΘ/ λ≤0.903 A−1) and R(F)=1.0%, Rw(F)=1.2%, GoF=3.07 for all 3471 independent reflections in the complete sphere of reflection. The X-X method was used to calculate deformation electron densities (DED) in natrolite. Within all tetrahedra, residual electron density-was found in the T-O bond directions indicating a considerable covalent contribution to the chemical bond. The range of the interatomic peak heights was from 0.19 to 0.34 e/A3 in the SiO4 tetrahedra and from 0.11 to 0.23 e/A3 in the AlO4 tetrahedron. The ionic contribution to the chemical bond manifests itself in the displacement of the peaks towards the oxygen atoms. Charge displacement due to interaction of nonframework cations with framework oxygen atoms as well as electron densities attributable to the lone pair orbitals in the water molecule have been observed.