The generalized Roper-Suffridge extension operator Φ(f) on the bounded complete Reinhardt domain Ω in C n with n ⩾2 is defined by $$\Phi _{n, \beta _2 , \gamma _2 , ..., \beta _n , \gamma _n }^r (f)(z) = \left( {rf\left( {\frac{{z_1 }}{r}} \right), \left( {\frac{{rf(\tfrac{{z_1 }}{r})}}{{z_1 }}} \right)^{\beta _2 } \left( {f'\left( {\frac{{z_1 }}{r}} \right)} \right)^{\gamma _2 } z_2 ,...,\left( {\frac{{rf(\tfrac{{z_1 }}{r})}}{{z_1 }}} \right)^{\beta _n } \left( {f'\left( {\frac{{z_1 }}{r}} \right)} \right)^{\gamma _n } z_n } \right)$$ for (z 1, z 2, ..., z n ) ∈ Ω, where r = r(Ω) = sup{|z 1|: (z 1, z 2, ..., z n ) ∈ Ω}, 0 ≼ γ j ≼ 1 − β j , 0 ≼ β j ≼1, and we choose the brach of the power functions such that \((\tfrac{{f(z_1 )}}{{z_1 }})^{\beta _j } |_{z_1 = 0} = 1\) and \((f'(z_1 ))^{\gamma _j } |_{z_1 = 0} = 1\), j = 2, ..., n. In this paper, we prove that the operator \(\Phi _{n, \beta _2 , \gamma _2 , ..., \beta _n , \gamma _n }^r \) (f) is from the subset of S α * (U) to S α * (Ω) (0 ≼ α 0, j = 1,2, ..., n), U is the unit disc in the complex plane C, and S α * (Ω) is the class of all normalized starlike mappings of order α on Ω. We also obtain that \(\Phi _{n, \beta _2 , \gamma _2 , ..., \beta _n , \gamma _n }^r \) (f) ∈ S α * (D p ) if and only if f ∈ f ∈ S α * (U) for 0 ≼ α < 1 and some suitable constants β j , γ j , p j .
Read full abstract