The main complication that may arise after surgery is the formation of adhesions. The current trend in the prevention of postoperative adhesions is the application of anti-adhesive barrier materials for the separation of wound tissue during the critical period of mesothelial repair and healing. In this work, cryogels based on pectin and chitosan were obtained by the ionic cryotropic gelation method. It was found that the Heracleum L. pectin cryogels are more elastic (73 ± 6 kPa) than the apple pectin cryogels (29 ± 11 kPa). The addition of chitosan with different physical and chemical characteristics did not significantly affect the elasticity of pectin–chitosan cryogels. The greatest swelling ability was achieved during in vivo incubation of Heracleum L. pectin cryogels and Heracleum L. pectin with reacetylated chitosan cryogels (17.1 ± 1.6 and 14.2 ± 2.0 g/g, respectively). It was found that the complete biodegradation of apple pectin cryogels occurred within 24 h of incubation in the rat abdominal cavity. Heracleum L. pectin cryogels were encapsulated in a fibrous capsule and detected in the abdominal cavity after 168 h. Maximum anti-adhesion effect was observed through the use of apple pectin cryogels (0 ± 0.5 score). Significant anti-adhesive effect was also observed through the use of apple pectin–reacetylated chitosan cryogels (1 ± 0.5 score). Due to the high anti-adhesive activity, such cryogels can be recommended for the development of a new barrier material for use in surgery. The potential anti-adhesive mechanism of apple pectin cryogels which may be attributed to a combination of barrier function and bioactivity of cryogels components was discussed.
Read full abstract