Probabilistic team semantics is a framework for logical analysis of probabilistic dependencies. Our focus is on the axiomatizability, complexity, and expressivity of probabilistic inclusion logic and its extensions. We identify a natural fragment of existential second-order logic with additive real arithmetic that captures exactly the expressivity of probabilistic inclusion logic. We furthermore relate these formalisms to linear programming, and doing so obtain PTIME data complexity for the logics. Moreover, on finite structures, we show that the full existential second-order logic with additive real arithmetic can only express NP properties. Lastly, we present a sound and complete axiomatization for probabilistic inclusion logic at the atomic level.