Hybrid facility investments from renewable energy sources have increased in recent years. In general, solar power is the secondary energy source in hybrid systems. The reason why solar energy is most commonly used in hybrid power systems is that it is cheaper than other types of renewable energy. Solar-Hydroelectric (SHE) is one of the foremost compatible hybrid energy pairs, as solar and hydroelectric power generation profiles complement one another. Hybrid systems consisting of solar and hydropower have complementary characteristics due to the shared use of infrastructure systems and different periodicities in power generation. Energy management is important for SHE-integrated facilities. Since only a limited amount of energy can be injected into the grid from transformer capacities, energy management in hybrid systems is of great importance. To manage energy in hybrid energy systems, the amount of energy that can be produced each hour must be determined. In hybrid energy plants, there is usually already another renewable energy plant in place, and solar energy is added on top and optimized. Since there are no pyrometers in the existing plants, the daily radiation data from the National Aeronautics and Space Administration (NASA) is used, but the daily energy production amount may be insufficient for accurate energy management. To realize this, it’s necessary to reveal the energy generation on an hourly basis. During this study, the quantity of radiation on an hourly basis was determined to calculate solar power generation. Empirical and econometric models utilized in radiation amount determination were performed, and the most appropriate method was clarified by comparing them with one another. Hourly-based radiation is achieved with an empirical method by using National Aeronautics and Space Administration (NASA) daily radiation.
Read full abstract