BackgroundThis study aims to analyze potential differences in clinicopathology, efficacy of neoadjuvant therapy (NAT), and clinical outcome among HER2-null, HER2-ultralow and HER2-low breast cancers.MethodsConsecutive cases of HER2-negative breast cancer that received NAT were included. They were classified as HER2-null (no staining), HER2-ultralow (incomplete faint staining in ≤ 10% of tumour cells) and HER2-low (HER2-1 + or HER2-2+, in situ hybridisation negative). Subgroup analysis was performed based on the HER2 expression level.ResultsOut of 302 patients, 215 (71.19%) were HER2-low, 59 (19.54%) were HER2-ultralow, and 28 (9.27%) were HER2-null. In comparison to the HER2-ultralow group, the HER2-low group exhibited higher expression frequencies of ER (p < 0.001), PR (p < 0.001), and AR (p = 0.004), along with a greater prevalence of the luminal subtype (p < 0.001). The HER2-ultralow group also demonstrated a higher prevalence of lymph node metastasis compared to the HER2-null group (p = 0.026). Varied rates of pathologic complete response (pCR) were observed among the three subgroups: HER2-null, HER2-ultralow, and HER2-low, with rates of 35.71%, 22.03%, and 12.56%, respectively. Only the HER2-low subgroup exhibited a significant difference compared to HER2-null (p = 0.001). Despite variations in pCR rates, the three subgroups exhibited comparable disease-free survival (DFS) (p = 0.571). Importantly, we found HER2-low patients with better treatment response (RCB-0/I) exhibited significantly better DFS than those with significant residual disease (RCB-II/III) (P = 0.036). The overall rate of HER2 immunohistochemical score discordance was 45.24%, mostly driven by the conversion between HER2-0 and HER2-low phenotype. Notably, 32.19% of cases initially classified as HER2-0 phenotype on baseline biopsy were later reclassified as HER2-low after neoadjuvant therapy, and it is noteworthy that 22 out of these cases (78.57%) originally had an HER2-ultralow status in the pretreatment biopsy sample.ConclusionsOur results demonstrate the distinct clinicopathological features of HER2-low and HER2-ultralow breast tumors and confirm that RCB is an effective predictor of prognosis in HER2-low populations for the first time. Notably, our findings demonstrate high instability in both HER2-low and HER2-ultralow expression from the primary baseline biopsy to residual disease after NAT. Furthermore, this study is the first to investigate the clinicopathological feature and the effectiveness of NAT for HER2-ultralow breast cancer.