Comparative neuroanatomists have long sought to determine which part of the pallium in nonmammals is homologous to the mammalian neocortex. A number of similar connectivity patterns across species have led to the idea that the basic organization of the vertebrate brain is relatively conserved; thus, efforts of the last decades have been focused on determining a vertebrate "morphotype" - a model comprising the characteristics believed to have been present in the last common ancestor of all vertebrates. The endeavor to determine the vertebrate morphotype has been riddled with controversies due to the extensive morphological diversity of the pallium among vertebrate taxa. Nonetheless, most proposed scenarios of pallial homology are variants of a common theme where the vertebrate pallium is subdivided into subdivisions homologous to the hippocampus, neocortex, piriform cortex, and amygdala, in a one-to-one manner. We review the rationales of major propositions of pallial homology and identify the source of the discrepancies behind different hypotheses. We consider that a source of discrepancies is the prevailing assumption that there is a single "morphotype of the pallial subdivisions" throughout vertebrates. Instead, pallial subdivisions present in different taxa probably evolved independently in each lineage. We encounter discrepancies when we search for a single morphotype of subdivisions across vertebrates. These discrepancies can be resolved by considering that several subdivisions within the pallium were established after the divergence of the different lineages. The differences of pallial organization are especially remarkable between actinopterygians (including teleost fishes) and other vertebrates. Thus, the prevailing notion of a simple one-to-one homology between the mammalian and teleost pallia needs to be reconsidered.
Read full abstract