Second-generation, sex-specific genetic linkage maps were generated for the economically important estuarine-dependent marine fish Sciaenops ocellatus (red drum). The maps were based on F(1) progeny from each of two single-pair mating families. A total of 237 nuclear-encoded microsatellite markers were mapped to 25 linkage groups. The female map contained 226 markers, with a total length of 1270.9 centiMorgans (cM) and an average inter-marker interval of 6.53 cM; the male map contained 201 markers, with a total length of 1122.9 cM and an average inter-marker interval of 6.03 cM. The overall recombination rate was approximately equal in the two sexes (♀:♂=1.03:1). Recombination rates in a number of linkage intervals, however, differed significantly between the same sex in both families and between sexes within families. The former occurred in 2.4% of mapped intervals, while the latter occurred in 51.2% of mapped intervals. Sex-specific recombination rates varied within chromosomes, with regions of both female-biased and male-biased recombination. Original clones from which the microsatellite markers were generated were compared with genome sequence data for the spotted green puffer, Tetraodon nigroviridis; a total of 43 matches were located in 17 of 21 chromosomes of T. nigroviridis, while seven matches were in unknown portions of the T. nigroviridis genome. The map for red drum provides a new, useful tool for aquaculture, population genetics, and comparative genomics of this economically important marine species.
Read full abstract