Road pavements in Korea generally show shorter service life than the predicted one. There are many reasons for this phenomenon including increased traffic load and other attacks from exposure conditions. In order to extend a service life and upgrade the pavement, a new multi-functional composite pavement system is being developed in Korea. This study is to investigate the performances of fiber-reinforced lean concrete for pavement base. This study considered mineral admixtures of fly ash and reject ash. The reject ash is defined as ash that does not meet the specifications for fly ash so that it cannot be used as a supplemental material for cement replacement. Due to the inherent property of lean concrete, compaction during the fabrication of specimens is a key factor. Therefore, this study suggests an appropriate compaction method. From the test results, the compressive strengths of the concrete satisfied the required limit of 5 MPa at 7 days. When a compaction roller was used to mimic actual field conditions, the strength development seemed to be influenced by the compaction energy rather than hydration of cement itself.