ABSTRACT Compared with the compaction of general highway asphalt pavement, that of steel bridge deck pavement (SBDP) is more complicated and vulnerable due to special supporting conditions and severe construction environment. Besides, the existing simulation models are not suitable for the analysis of SBDP compaction. To clarify the compaction mechanism and characteristics of SBDP under unfavorable construction conditions, the particles were generated using a random particle generation algorithm and the asphalt mixture layer was simulated through the discrete element method (DEM); the steel bridge deck with weld seam was taken as an example of unfavorable external conditions and simulated through the finite element method (FEM). On this basis, the spatial movement and contact state of the particles during the compaction process were tracked and investigated using the DEM-FEM coupling model. Results show that the DEM-FEM coupling model is effective and feasible to simulate SBDP compaction process. The spatial movement and contact state of the particles are described. The findings could contribute to improving SBDP compaction quality. The coupling of DEM-FEM also provides the method reference to the research of other SBDP compaction problems, such as the influence of temperature field variation and bridge vibration.
Read full abstract