In the present article, A new class of singularity-free charged anisotropic stars is derived in f(Q)-gravity regime. To solve the field equations, we assume a particular form of anisotropy along with an electric field and obtain a new exact solution in f(Q)-gravity. The explicit mathematical expression for the model parameters is derived by the smooth joining of the obtained solutions with the exterior Reissner–Nordstrom de-Sitter solution across the bounding surface of a compact star along with the requirement that the radial pressure vanishes at the boundary. We have modeled four self-gravitating pulsar objects such as LMC X-4, PSR J1903+327, PSR J1614-2230, and GW190814 in our current study and predict the radii of these objects that fall between 8 and 10 km. Furthermore, the physical validity of the solution is performed for self-gravitating object PSR J1614-2230 with mass 1.97±0.04M⊙\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1.97\\pm 0.04~M_{\\odot }$$\\end{document} with radius 10 km. The solution successfully fulfills all the physical requirements along with the stability and hydrostatic equilibrium conditions for a well-behaved model. The non-metricity f(Q)-parameter χ1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\chi _{_1}$$\\end{document} and electric charge parameter η\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\eta $$\\end{document} play an important role in the maximum mass of the objects. The maximum mass increases when χ1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\chi _{_1}$$\\end{document} and η\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\eta $$\\end{document} increase but a non-collapsing stable object can be obtained when χ1≤0.0205\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\chi _{_1}\\le 0.0205$$\\end{document} and η≤0.0006\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\eta \\le 0.0006$$\\end{document}.