Vascular diseases are a leading cause of death and disability worldwide. Despite having precursor conditions like peripheral arterial disease (PAD), they are often only diagnosed after the onset of stroke or heart attack. Low-cost, portable, noninvasive, point-of-care (POC), label-free assessment of deep vascular function benefits PAD diagnosis, especially in resource poor settings of the world. Doppler ultrasound-based blood flow measurements can diagnose PAD, albeit with limited sensitivity and specificity. To overcome this, here, we propose the first-of-its-kind dual-modality photoacoustic-and-ultrasound (PAUS) imaging system that integrates a multiwavelength pulsed laser diode (PLD) with a compact ultrasound data acquisition unit. The mesoscopic imaging depth of the portable PLD-PAUS system was validated using tissue phantoms, and its multispectral photoacoustic imaging capabilities were validated using an atherosclerosis-mimicking phantom. Furthermore, we demonstrated high-contrast volumetric in vivo photoacoustic imaging of rodent abdominal vasculature and quantified vessel reactivity due to hypercapnia stimulation. The multiparametric functional and molecular imaging capabilities of the PLD-PAUS system holds promise for POC applications.