Posttraumatic stress disorder (PTSD) is a debilitating mental health condition that results from exposure to traumatic event(s). Decreased astrocyte-related proteins (e.g., glial fibrillary acidic protein, GFAP) and atrophic astrocytes in corticolimbic brain areas implicated in PTSD have been reported in experimental models suggesting that astrocyte pathology may be a feature of this disorder. We used positron emission tomography (PET) of the monoamine oxidase (MAO)-B probe [11C]SL25.1188 to test the hypothesis that levels of MAO-B, an index of astrocyte levels is decreased in PTSD. MAO-B availability ([11C]SL25.1188 distribution volume) was measured in 13 participants with PTSD (∼39 years, 6F) and 17 healthy controls (HC) (∼31 years, 9F). A magnetic resonance image was acquired to delineate 6 cortiolimbic brain regions. PTSD was associated with a trending reduction in [11C]SL25.1188 availability across regions (8-17%; p = 0.067) implicating the ventral striatum (p uncorrected = 0.015) and medial prefrontal cortex (p uncorrected = 0.060). [11C]SL25.1188 availability was ∼30% lower in corticolimbic regions in PTSD with co-morbid major depressive disorder (MDD) (n = 4) vs HC (p = 0.001) and vs PTSD without MDD (p = 0.005). Our preliminary results do not suggest astrogliosis (inferred from elevated availability) in PTSD, but rather point to a loss of astrocytes or an independent downregulation of MAO-B in PTSD with more severe negative affect. These exploratory findings, which are partly in line with preclinical literature and recent PET observations of decreased microglia marker, Translocator Protein, in PTSD, warrant replication in a larger PTSD cohort.
Read full abstract