A series of silicon foam supported CoMn catalysts were prepared using impregnation, precipitation, and hydrothermal methods. Combining the characterization techniques such as XRD, H2-TPR, N2 physical adsorption, TEM, and XPS, the effect of different catalyst preparation methods on the catalytic performance in the synthesis of higher alcohols from syngas was investigated. It is shown that there are Co2+(Co2C) and Co0 species on the surface of the catalyst. The active sites of Co2C-Co0 on the surface of the catalyst prepared by hydrothermal method have a good synergistic effect, which is conducive to the generation of alcohols. A higher proportion of Co2C also promotes the associative adsorption and insertion of CO, resulting in the highest alcohol selectivity. Under the reaction conditions of t=260 °C, p=5.0 MPa, GHSV=4500 h–1 and H2/CO(volume ratio)=2:1, the catalyst exhibited the best reaction performances with CO conversion of 11.1%, total alcohol selectivity of 34.7%, and C2+OH selectivity of 34.5%.
Read full abstract