Abstract

Co-Fe, Cu-Cr, and Co-Mnmixed oxide catalysts were prepared using a one-pot hard template synthesis method, and their catalytic performance was investigated before and after the rearrangement of the template. To evaluate the structural properties of the catalysts, various analyses were employed, including the BET, XRD, H2-TPR, FE-SEM, EDX, and X-ray digital mapping of the elements. The results indicated that the rearrangement of the catalyst structure had a profound effect on the structural and catalytic properties, so that in all three synthesized catalysts, the specific surface and the reducibility increased significantly, and the crystalline structure and morphology of the catalysts changed remarkably. The specific surface area of the CoFe, CuCr, and CoMn catalysts increased from 3.5, 1.1, and 72.9m2/g to 151.3, 52.8, and 108.0m2/g, respectively. These structural changes significantly increased the catalytic performance. The results indicated that the 100% conversion temperature of the CoMn catalyst as the optimal sample after rearrangement was reduced from 250 to 125°C. Also, the stability of the CoMn catalyst in dry and wet conditions was investigated and the results indicated that the presence of water vapor reduced the activity and stability of the catalyst. The activation energy was also calculated on Co-Mn catalyst (59.5kJ/mol) and the results confirmed that the most probable mechanism for this reaction was the MVK mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.