During postharvest processing of sugarcane for raw sugar, microbial activity results in sucrose loss and undesirable exopolysaccharide (EPS) production. Historically, culture-based approaches have focused on the bacterium Leuconostoc mesenteroides as the main contributor to both processes. However, recent studies have shown that diverse microbes are present in sugarcane factories and may also contribute to sugarcane juice deterioration. In the present study, high-throughput amplicon-based sequence profiling was applied to gain a more comprehensive view of the microbial community in Louisiana raw sugar factories. Microbial profiling of the bacterial and fungal microbiomes by 16S V4 and ITS1 sequences, respectively, identified 417 bacterial amplicon sequence variants (ASVs) and 793 fungal ASVs. While Leuconostoc was indeed the most abundant bacterial genus overall (40.9% of 16S sequences), multiple samples were dominated by other taxa such as Weissella and Lactobacillus, underscoring the microbial diversity present in sugarcane factories. Furthermore, flask cultures inoculated with the same samples demonstrated differences in the rate of sucrose consumption, as well as the production of exopolysaccharides and other organic acids, which may result from the observed differences in microbial composition. IMPORTANCE Amplicon-based sequencing was utilized to address long-ignored gaps in microbiological knowledge about the diversity of microbes present in processing streams at Louisiana sugarcane raw sugar factories. These results support an emerging model where diverse organisms contribute to sugarcane juice degradation, help to contextualize microbial contamination problems faced by raw sugar factories, and will guide future studies on biocontrol measures to mitigate sucrose losses and operational challenges due to exopolysaccharide production.