The transition towards a decentralized, decarbonized, and distributed energy infrastructure necessitates techno-economic initiatives to empower local energy communities (LECs) to achieve self-reliance and evolve into self-sustained electricity networks. It is crucial to underscore the significance of network resilience, especially in the context of local power generation, battery storage, and the radial topology of low-voltage (LV) networks. While contemporary LV networks have made significant attempts to integrate distributed energy resources (DERs), the notable deficiency lies in their lack of network redundancy, posing a substantial challenge in the occurrence of high-impact, low-probability (HILP) events. Therefore, to enhance LV network resilience and leverage its capability to withstand unexpected disruptions, the network operator needs to unlock the potential contributions of end-users within the active distribution networks (ADNs). In this paper, a comprehensive model is developed based on multi-temporal optimal power flow (MTOPF) for unbalanced LV networks addressing the technical issues in islanded microgrid operational planning. The contributions of the grid-scale batteries in forming islanded microgrids and the flexibility that can be provided by the end-users in the LEC have been considered in this paper. To demonstrate the performance of the proposed model, the simulation studies have been carried out on a part of medium and low voltage networks, consisting of network reconfiguration and load transferring capability to reduce the service interruptions during HILP events. The energy-not-served (ENS) is chosen as one of the key performance indicators (KPIs) in this study. With the unlocking flexibility potentials and contribution of the DERs, including grid-scale energy storage (GES) units and Photovoltaic (PV) panels, the ENS has been reduced from 700.8 kWh to 447.5 kWh by activating the local resources, proper switching action, and contribution of the flexible loads, for one of the severe HILP events, i.e., the main grid outage. In this case, the full load curtailment index is reduced from 180 to 106 client hours.
Read full abstract