Antimony (Sb) mining often causes severe Sb pollution and associate arsenic (As) compound contamination. To further understand the interaction mechanism among soil microorganisms, heavy metal distribution, and geochemical factors, the effects of environmental factors on soil microbial communities under different levels of Sb-As co-contamination were studied in situ of Chashan antimony mine, Guangxi Province. The results showed that the range of Sb and As contents in soil were 1339.63-7762.28mg/kg and 2170.3-10,371.36mg/kg, respectively, and the residual fraction accounted for more than 98.0% with less than 2.0% of bioavailable fraction. Besides, the concentration of the two metals is both related to the distance to surface runoff. Different microbial communities in arable soils of each sample site were analyzed, which was significantly affected by soil environmental factors such as pH, ALN, AP, OM, Tot-Sb, Tot-As, Bio-As, and Bio-Sb. The phylum of Actinobacteria in sites 1, 4, and 5 was the most dominant and the phylum of Proteobacteria were the most dominant in sites 2 and 3. Moreover, the results of redundancy analysis (RDA), variation partition analysis (VPA), and Spearman correlation analyses demonstrated that microorganisms, heavy metal distribution, and geochemical factors interacted with each other and together shaped the microbial community. Our findings are beneficial for understanding the response of soil microorganisms to As-Sb distribution and geochemical factors in arable soils under Sb mining areas.