In this paper, we propose a three-layer distributed simulation network architecture, which consists of a distributed virtual simulation network, a perception and control subnetwork, and a cooperative communication service network. The simulation architecture runs on a distributed platform, which can provide unique virtual scenarios and multiple simulation services for the verification of basic perception, control, and planning algorithms of a single-robot system and can verify the distributed collaboration algorithms of heterogeneous multirobot systems. Further, we design simulation experimental scenarios for classic heterogeneous robotic systems such as unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). Through the analysis of experimental measurement data, we draw several important conclusions: firstly, the replication time characteristics and update frequency characteristics of entity synchronization in our system indicate that the replication time of entity synchronization in our system is relatively short, and the update frequency can meet the needs of multirobot collaboration and ensure the real-time use and accuracy of the system; secondly, we analyze the bandwidth usage of data frames in the whole session and observe that the server side occupies almost half of the data throughput during the whole session, which indicates that the allocation and utilization of data transmission in our system is reasonable; and finally, we construct a bandwidth estimation surface model to estimate the bandwidth requirements of the current model when scaling the server-side scale and synchronization-state scale, which provides an important reference for better planning and optimizing of the resource allocation and performance of the system. Based on this distributed simulation framework, future research will improve the key technical details, including further refining the coupling object dynamic model update method to support the simulation theory of the coupling relationship between system objects, studying the impact of spatiotemporal consistency of distributed systems on multirobot control and decision making, and in-depth research on the impact of collaborative frameworks combined with multirobot systems for specific tasks.