BackgroundDeveloping novel germplasm by using wheat wild related species is an effective way to rebuild the wheat resource bank. The Psathyrostachys huashanica Keng (P. huashanica, 2n = 2x = 14, NsNs) is regarded as a superior species to improve wheat breeding because of its multi-resistance, early maturation and numerous tiller traits. Introducing genetic components of P. huashanica into the common wheat background is the most important step in achieving the effective use. Therefore, the cytogenetic characterization and influence of the introgressed P. huashanica large segment chromosomes in the wheat background is necessary to be explored.ResultsIn this study, we characterized a novel derived line, named D88-2a, a progeny of the former characterized wheat-P. huashanica partial amphiploid line H8911 (2n = 7x = 49, AABBDDNs). Cytological identification showed that the chromosomal composition of D88-2a was 2n = 44 = 22II, indicating the addition of exogenous chromosomes. Genomic in situ hybridization demonstrated that the supernumerary chromosomes were a pair of homologues from the P. huashanica and could be stably inherited in the common wheat background. Molecular markers and 15 K SNP array indicated that the additional chromosomes were derived from the sixth homoeologous group (i.e., 6Ns) of P. huashanica. Based on the distribution of the heterozygous single-nucleotide polymorphism sites and fluorescence in situ hybridization karyotype of each chromosome, this pair of additional chromosomes was confirmed as P. huashanica 6Ns large segment chromosomes, which contained the entire short arm and the proximal centromere portion of the long arm. In terms of the agronomic traits, the addition line D88-2a exhibited enhanced stripe rust resistance, improved spike characteristics and increased protein content than its wheat parent line 7182.ConclusionsThe new wheat germplasm D88-2a is a novel cytogenetically stable wheat-P. huashanica 6Ns large segment addition line, and the introgressed large segment alien chromosome has positive impact on plant spikelet number and stripe rust resistance. Thus, this germplasm can be used for genetic improvement of cultivated wheat and the study of functional alien chromosome segment.
Read full abstract