Common wastewater treatment strategies in the food industry do not include efficient remediation strategies for nitrogen, phosphorous and organic carbon. Incorporating microalgae in water treatment plants is rising in popularity because of their high nutrient and trace element uptake driven by light. In this study, four different side streams from an Austrian potato processing company have been screened for their applicability of microalgal cultivation. The side streams were assessed for Chlorella vulgaris growth and their requirement of any additional pretreatment or media supplementation. One side stream specifically, called blanching water II, a stream generated by boiling the potatoes for ease of peeling, turned out very useful to cultivate Chlorella vulgaris and concomitantly remedy the wastewater. Compared to a state-of-the-art cultivation in BG11, cultivating Chlorella vulgaris in blanching water II led to a 45 % increase in specific growth rate of 1.29 day−1 and a 48% increase in biomass productivity to 294.6 mg/L/day, while all nitrogen and phosphate present in the side stream were metabolized. Overall, the results demonstrate that the water remediation process for blanching water II shows vast potential in regard to water purification and waste to value approaches.