Tick-borne diseases (TBD) are common across the United States and can result in critical and chronic diseases in a variety of veterinary patients. Moreover, borreliosis, anaplasmosis, rickettsiosis, ehrlichiosis, and babesiosis are zoonotic and have been cited as the most common TBDs. Molecular diagnostic methodologies utilized for screening domestic dogs for these causative agents include real-time PCR (qPCR) assays in both singleplex and multiplex formats. However, current limitations of qPCR instruments restrict the number of fluorogenic labels that can be differentiated by the instrument for a given reaction. This study describes the development of the TickPath Layerplex, a diagnostic assay based on qPCR methodology that was adapted for the simultaneous detection and characterization of 11 pathogens responsible for causing 5 common TBDs in domestic dogs. The analytical and diagnostic performance of the layerplex assay was evaluated and shown to be compatible with common instruments utilized in molecular diagnostic laboratories. Test results revealed no inhibition or reduction in sensitivity during validation of the layerplex assay, and the limit of detection was determined to be near 16 genome copy equivalents per microliter. Overall, the high sensitivity, specificity, and screening capability of the assay demonstrate its utility for broadly screening dogs for common TBDs.
Read full abstract