To assess the potential influence of coastal development on estuarine-habitat quality, we characterized land use and the intensity of land development surrounding small tidal tributaries in Tampa Bay. Based on this characterization, we classified tributaries as undeveloped, industrial, urban, or man-made (i.e., mosquito-control ditches). Over one third (37 %) of the tributaries have been heavily developed based on landscape development intensity (LDI) index values >5.0, while fewer than one third (28 %) remain relatively undeveloped (LDI < 3.0). We then examined the nekton community from 11 tributaries in watersheds representing the four defined land-use classes. Whereas mean nekton density was independent of land use, species richness and nekton-community structure were significantly different between urban and non-urban (i.e., undeveloped, industrial, man-made) tributaries. In urban creeks, the community was species-poor and dominated by high densities of poeciliid fishes, Poecilia latipinna and Gambusia holbrooki, while typically dominant estuarine taxa including Menidia spp., Fundulus grandis, and Adinia xenica were in low abundance and palaemonid grass shrimp were nearly absent. Densities of economically important taxa in urban creeks were only half that observed in five of the six undeveloped or industrial creeks, but were similar to those observed in mosquito ditches suggesting that habitat quality in urban and mosquito-ditch tributaries is suboptimal compared to undeveloped tidal creeks. Furthermore, five of nine common taxa were rarely collected in urban creeks. Our results suggest that urban development in coastal areas has the potential to alter the quality of habitat for nekton in small tidal tributaries as reflected by variation in the nekton community.