Angle-domain common-image gathers (ADCIGs) from elastic reverse time migration (ERTM) are valuable tools for seismic elastic velocity estimation. Traditional ADCIGs are based on the concept of common-offset domains, but common-shot domain implementations are often favored for computational cost considerations. Surface-offset gathers (SOGs) built from common-offset migration may serve as an alternative to the common-shot ADCIGs. We have developed a theoretical kinematic framework between these two domains, and we determined that the common SOG gives an alternative measurement of kinematic correctness in the presence of incorrect velocity. Specifically, we exploit analytical expressions for the image misposition between these two domains, with respect to the traveltime perturbation caused by velocity errors. Four formulations of the PP and PS residual moveout functions are derived and provide insightful information of the velocity error, angle, and PS velocity ratio contained in ERTM gathers. The analytical solutions are validated with homogeneous examples with a series of varied parameters. We found that the SOGs may perform in the way of simplicity and linearity as an alternative to the common-shot migration. To make a full comparison with ADCIGs, we have developed a cost-effective workflow of ERTM SOGs. A fast vector P- and S-wave decomposition can be obtained via spatial gradients at selected time steps. A selected ERTM imaging condition is then modified in which the migration is done by offset groups between each source and receiver pair for each P- and S-wave decomposition. Two synthetic (marine and land) examples are used to demonstrate the feasibility of our methods.